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1. Primary Production1 
 

1.1 Definition and ecological significance 

Gross primary production (GPP) is the rate at which photosynthetic plants and bacteria 
use sunlight to convert carbon dioxide (CO2) and water to the high-energy organic 
carbon compounds used to fuel growth. Free oxygen (O2



“biological pump” which transports 2-12 Pg C yr-1 of organic carbon to the deep sea 
(Falkowski et al., 1998; Muller-Karger et al., 2005; Emerson and Hedges, 2008; Doney, 
2010; Passow and Carlson, 2012), where it is sequestered from the atmospheric pool of 
carbon for 200-1500 years (Craig, 1957; Schlitzer et al., 2003; Primeau and Holzer, 2006; 
Buesseler, et al., 2007). 

Changes in the size structure of phytoplankton communities influence the fate of NPP 
(Malone, 1980; Legendre and Rassoulzadegan, 1996; Pomeroy et al., 2007; Marañón, 
2009). In general, small cells (picophytoplankton with equivalent spherical diameters < 2 
µm) account for most NPP in subtropical, oligotrophic (< 0.3 mg chlorophyll-a m-3), 
nutrient-poor (nitrate + nitrite < 1 µM), warm (> 20°C) waters. Under these conditions, 
the flow of organic carbon to harvestable fisheries and the biological pump are relatively 
small. In contrast, �o���Œ�P���Œ�������o�o�•���~�u�]���Œ�}�‰�Z�Ç�š�}�‰�o���v�l�š�}�v���E���î�ì���…�u�•��account for > 90 per cent of 
NPP in more eutrophic (> 5 mg chlorophyll-a m-3), nutrient-rich (nitrate + nitrite >10 
µM), cold (< 15°C) waters (Kamykowski, 1987; Agawin et al., 2000;  , 



integrated chlorophyll-a concentration (�N Chl), photosynthetically active solar radiation, 
and temperature (Antoine and Morel, 1996; Perry, 1986; Morel and Berthon, 1989; Platt 
and Sathyendranath, 1993; Behrenfeld and Falkowski, 1997; Sathyendranath, 2000; 
Gregg et al., 2003; Behrenfeld et al., 2006; Carr et al., 2006; Arrigo et al., 2008; Bissinger 
et al., 2008; McClain, 2009; Westberry et al., 2008; Cullen et al., 2012; Siegel et al., 
2013). 

An overview of the latest satellite based models may be found at the Ocean Productivity 
website.7 Satellite ocean-colour 



Iverson, 1976; Kemp et al., 1986; Duarte, 1989; Kaldy and Dunton, 2000; Duarte and 
Kirkman, 2001; Plus et al., 2001, Silva et al., 2009). 

1.2.3 The Phenology9 of Phytoplankton Annual Cycles  

The timing of seasonal increases in phytoplankton NPP is determined by environmental 
parameters, including day length, temperature, changes in vertical stratification, and the 
timing of seasonal sea-ice retreat in polar waters. All but day length are affected by 
climate change. Thus, phytoplankton phenology provides an important tool for 
detecting climate-driven decadal variability and secular trends. Phenological metrics to 
be monitored are the time of bloom initiation, bloom duration and time of maximum 
amplitude (Siegel et al., 2002; Platt et al., 2009). 

 

1.3 Spatial patterns and temporal trends 

Marine NPP varies over a broad spectrum of time scales from tidal, daily and seasonal 
cycles to low-frequency basin-scale oscillations and multi-decade secular trends 
(Malone, 1971; Pingree et al., 1975; Steele, 1985; Cloern, 1987; Cloern, 2001; Cloern et 
al., 2013; Duarte, 1989; Powell, 1989; Malone et al., 1996; Henson and Thomas, 2007; 
Vantrepotte and Mélin, 2009; Cloern and Jassby, 2010; Bode et al., 2011; Chavez et al., 
2011). Our focus here is on low-frequency cycles and multi-decade trends. 

1.3.1 Phytoplankton NPP 

For the most part, the global pattern of phytoplankton NPP (Figure 1) reflects the 
pattern of deep-water nutrient inputs to the euphotic zone associated with winter 
mixing and thermocline erosion at higher latitudes, thermocline shoaling at lower 
latitudes, and upwelling along the eastern boundaries of the ocean basins and the 
equator (Wollast, 1998; Pennington et al., 2006; Chavez et al., 2011; Ward et al., 2012). 
The global distribution of phytoplankton NPP is also influenced by iron limitation and 
grazing by microzooplankton in so-called High Nutrient Low Chlorophyll (HNLC) zones 
which account for ~20 per cent of the global ocean, e.g., oceanic waters of the subarctic 
north Pacific, subtropical equatorial Pacific, and Southern Ocean (Martin et al., 1994; 
Landry et al., 1997; Edwards et al., 2004). Nutrient inputs associated with river runoff 
enhance NPP in coastal waters during the growing season (Seitzinger et al., 2005; 
Seitzinger et al., 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 





last 100 years (Gregg et al., 2003; Boyce et al., 2014). A decadal scale decline is 
consistent with model simulations indicating that both NPP and the biological pump 
have decreased by ~7 per cent and 8 per cent, respectively, over the last five decades 
(Laufkötter et al., 2013), trends that are likely to continue through the end of this 
century (Steinacher et al., 2010). 

Given uncertainties concerning global trends, long-term impacts of secular changes in 
phytoplankton NPP on food security and climate change cannot be assessed at this time 
with any certainty. Resolving this controversy and predicting future trends will require 
sustained, multi-decadal observations and modelling of phytoplankton NPP and key 
environmental parameters (e.g., upper ocean temperature, pCO2, pH, depth of the 
aragonite saturation horizon, vertical stratification and nutrient concentrations) on 
regional and global scales – observations that may have to be sustained for at least 
another 40-50 years (Henson et al., 2010). 

1.3.2 Macrophyte NPP 

Marine macrophyte NPP, which is limited to tidal and relatively shallow waters in 
coastal ecosystems, varies from 30-1,200 g C m-2 yr-1 (Smith, 1981; Charpy-Roubaoud 
and Sournia, 1990; Geider et al., 2001; Duarte et al., 2005; Duarte et al., 2010; 
Fourqurean et al., 2012; Ducklow et al., 2013). In contrast to the uncertainty of decadal 
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to be on the order of 2-4 per cent of river discharge (Beusen et al., 2013). Given this, 
and challenges of quantifying ground water inputs on ocean basin to global scales (NRC, 
2004), this source is not considered herein. 

 

2.1  Nitrogen 

The ocean's nitrogen cycle is driven by complex microbial transformations, including N 
fixation, assimilation, nitrification, anammox and denitrification (Voss et al., 2013) 
(Figure 2). NPP depends on the supply of reactive N (Nr)

10 to the euphotic zone. 
Although most dissolved chemical forms of Nr can be assimilated by primary producers, 
the most abundant chemical form, dissolved dinitrogen gas (N2), can only be assimilated 
by marine diazotrophs.11 Nr inputs to the euphotic zone occur via fluxes of nitrate from 
deep water (vertical mixing and upwelling), marine N2 fixation, river discharge, and 
atmospheric deposition.12 Nr is removed f





zones (OMZs) account for most losses of N from the marine Nr inventory (Ulloa et al., 
2012; Ward, 2013).  

Table 2. Summary of estimated sources and sinks (Tg N yr-1) in the global marine nitrogen budget. (Data 
sources: Codispoti et al., 2001; Gruber and Sarmiento, 2002; Karl et al., 2002; Galloway et al., 2004; 
Mahaffey et al., 2005; Seitzinger et al., 2005; Boyer et al., 2006; Moore et al., 2006; Deutsch et al., 2007; 
Duce et al., 2008; DeVries et al., 2012; Grosskopf et al., 2012; Luo et al., 2012; Naqvi, 2012.) 

 

Sources N fixation 60-200 

Rivers 35-80 

Atmosphere 38-96 

TOTAL 133-376 

Sinks Denitrification & anammox 120-450 

Sedimentation 25 



known distribution of marine diazotrophs and the observation that most marine N2 
fixation occurs in warm, oligotrophic waters between 30° N and 30° S (Mahaffey et al., 
2005; Stal, 2009; Sohm et al., 2011). However, given the wide and overlapping ranges of 
current estimates of Nr sources and sinks (Table 2), the extent to which the two are in 
steady state remains controversial. 

Atmospheric deposition of iron to the oceans via airborne dust may ultimately control 
the rate of N2 fixation in the global ocean and may account for the relatively high rate of 
N2 fixation in the subtropical central gyres (Karl et al., 2002). Fe II is required for 
photosynthetic and respiratory electron transport, nitrate and nitrite reduction, and N2 
fixation. The large dust plume that extends from North Africa over the subtropical North 
Atlantic Ocean dominates the global dust field (Stier et al., 2005). Consequently, iron 
deposition is particularly high in this region (Mahowald et al., 2005) where it may 



sustained a balanced N budget (Landolfi et al., 2013). If the coupling is close as argued 
above, the budget may not be in steady state. In this scenario, increases in vertical 
stratification of the upper ocean and expansion of OMZs associated with ocean warming 
(Keeling et al., 2010) could lead to closer spatial coupling of N2 fixation and 
denitrification, a net loss of N from the marine Nr inventory, and declines in NPP and 
CO2 sequestration during this century. 

 

2.2 Phosphorus 

Phosphorus (P) is an essential nutrient utilized by all organisms for energy transport and 
growth. The primary inputs of P occur via river discharge and atmospheric deposition 
(Table 3). Biologically active P (BAP) in natural waters usually occurs as phosphate (PO4

-

3), which may be in dissolved inorganic forms (including orthophosphates and 
polyphosphates) or organic forms (organically bound phosphates). Natural inputs of BAP 
begin with chemical weathering of rocks followed by complex biogeochemical 
interactions, whose time scales are much longer than anthropogenic P inputs (Benitez-
Nelson, 2000). Primary anthropogenic sources of BAP are industrial fertilizer, sewage 
and animal wastes. 

The Marine Phosphorus Budget: River discharge of P into the coastal ocean accounts for 
most P input to the ocean (Table 3). However, most riverine P is sequestered in 
continental shelf sediments (Paytan and McLaughlin, 2007) so that only ~25 per cent of 
the riverine input enters the NPP-driven marine P cycle. Estimates of BAP reaching the 
open ocean from rivers range from a few tenths to perhaps 1 Tg P yr-1 (Seitzinger et al., 
2005; Meybeck, 1982; Sharpies et al., 2013). Mahowald et al., (2008) estimated that 
atmospheric inputs of BAP are ~0.1 Tg P yr-1. Together these inputs would support ~0.1 
per cent of NPP annually. Thus, like Nr, virtually all NPP is supported by BAP recycled 
within the ocean on a global scale. 

Table 3. Summary of estimated sources and sinks (Tg P yr-1) in the global marine phosphorus budget. 
(Data sources: Filippelli and Delaney, 1996; Howarth et al., 1996; Benitez-Nelson, 2000; Compton et al., 
2000; Ruttenberg, 2004; Seitzinger et al., 2005; Paytan and McLaughlin, 2007; Mahowald et al., 2008; 
Harrison et al., 2010; Krishnamurthy et al., 2010.) 



very soluble, and most of it is found downwind of desert and arid regions. Only ~0.1 Tg P 
yr-1 of BAP appears to enter the oceans via atmospheric deposition (Mahowald et al., 
2008). Although a small term in the P budget (Table 3), atmospheric deposition appears 
to be the main external source of BAP in the oligotrophic waters of the subtropical gyres 
and the Mediterranean Sea (Paytan and McLaughlin, 2007; Krishnamurthy et al., 2010). 

Burial in continental shelf and deep-sea sediments is the primary sink, with most 
riverine input being removed from the marine P cycle by rapid sedimentation of 
particulate inorganic (non-reactive mineral lattices) P in coastal waters (Paytan and 
McLaughlin, 2007). Burial in deep-sea sediments occurs after transformations from 
dissolved to particulate forms in the water column. Of the riverine input, 60-85 per cent 
is buried in continental shelf sediments (Slomp, 2011). Assuming that inputs from river 
discharge and atmospheric deposition are, respectively, ~15 Tg P yr-1 and 1 Tg P yr-1, and 
that 11 Tg P yr-1 and 5 Tg P yr-1, respectively, are buried in shelf and open-ocean 
sediments, the P budget appears to be roughly balanced on the scale of P turnover 
times in the ocean (~1500 years, Paytan and McLaughlin, 2007). 

 

3. Variability and Resilience of Marine Ecosystems 

 

3.1  Phytoplankton species diversity and resilience 

Biodiversity enhances resilience by increasing the range of possible responses to 
perturbations and the likelihood that species will functionally compensate for one 
another following disturbance (functional redundancy) (McCann, 2000; Walker et al., 
2004; Hooper et al., 2005; Haddad et al., 2011; Appeltans et al., 2012; Cleland, 2011). 
Annually averaged phytoplankton species diversity of the upper ocean tends to be 
lowest in polar and subpolar waters, where fast-growing (opportunistic) species account 
for most NPP, and highest in tropical and subtropical waters, where small phytoplankton 
(< 10 µm) account for most NPP (Barton et al., 2010).  Phytoplankton species diversity is 
also a unimodal function of phytoplankton NPP, 



supported by large phytoplankton (> 20 µm). As such, they are critical links in nutrient 
cycles and the transfer of NPP to higher trophic levels of metazoan consumers. They fuel 
the biological pump and they limit excessive increases in NPP (e.g., Corten and Linley, 
2003; Greene and Pershing, 2004; Steinberg et al., 2012). Microbial food webs dominate 
the biological cycles of C, N and P in the upper ocean and feed into metazoan food webs 
involving zooplankton, planktivorous fish, and their predators (Pomeroy et al., 2007; 
Moloney et al., 2011; Ward et al., 2012). Zooplankton in microbial food webs are 
typically dominated by heterotrophic and mixotrophic flagellates and ciliates. Metazoan 
food webs dominate the flow of energy and nutrients to harvestable fish stocks and to 
the deep sea (carbon sequestration). Zooplankton in metazoan food webs are typically 
dominated by crustaceans (e.g., copepods, krill and shrimp) and are part of relatively 
short, efficient, and nutritionally rich food webs supporting large numbers of 
planktivorous and piscivorous fish, seabirds, and marine mammals (Richardson, 2008; 
Barnes et al., 2010; Barnes et al., 2011). 

Microbial food webs support less zooplankton biomass than do metazoan food webs, 
and a recent analysis suggests that zooplankton/phytoplankton ratios range from a low 
of ~0.1 in the oligotrophic subtropical gyres to a high of ~10 in upwelling systems and 
subpolar regions (Ward et al., 2012). Such a gradient is consistent with a shift from 
“bottom-up”, nutrient-limited NPP in the oligotrophic gyres, where microflagellates are 
the primary consumers of NPP (Calbet, 2008), to “top-down”, grazing control of NPP by 
zooplankton in more productive high-latitude and upwelling ecosystems, where 
planktonic crustaceans are the primary grazers of NPP (Ward et al., 2012). Thus, 
zooplankton grazing on phytoplankton is an important parameter of spatial patterns and 
temporal trends in NPP, particularly at high latitudes and in coastal upwelling systems 
(section 6.1.4). 

3.2.1 NPP and Fisheries 

Fish production depends to a large extent on NPP but the relationship between NPP and 
fish landings is complex. For instance, Large Marine Ecosystems (LMEs) of the coastal 
ocean account for ~30 per cent of marine phytoplankton NPP and ~80 per cent of 
marine fish landings globally (Sherman and Hempel, 2009). They are also “proving 
grounds” for the development of ecosystem-based approaches (EBAs) to fisheries 
management (McLeod and Leslie, 2009; Sherman and Hempel, 2009; Malone et al., 
2014b



Ware and Thomson, 2005; Frank et al., 2006; Chassot et al., 2007; Sherman and Hempel, 
2009; Blanchard et al., 2012). However, the NPP required to support annual fish 
landings (PPR) varies among LMEs, e.g., fi



3.2.3 Coastal Eutrophication and “Dead Zones” 

Excess phytoplankton NPP in coastal ecosystems can lead to accumulations of 
phytoplankton biomass and eutrophication. Anthropogenic N and P loading to estuarine 
and coastal marine ecosystems has more than doubled in the last 100 years (Seitzinger 
et al., 2010; Howarth et al., 2012),17 leading to a global spread of coastal eutrophication 
and associated increases in the number of oxygen-depleted “dead zones” (Duarte, 1995; 
Malone et al., 1999; Diaz and Rosenberg, 2008; Kemp et al., 2009), loss of sea grass beds 
(Dennison et al., 1993; Kemp et al., 2004; Schmidt et al., 2012), and increases in the 
occurrence of toxic phytoplankton blooms (see below). Current global trends in coastal 
eutrophication and the occurrence of “dead zones” and toxic algal events indicate that 
phytoplankton NPP is increasing in many coastal ecosystems, a trend that is also likely to 
exacerbate future impacts of over-fishing, sea-level rise, and coastal development on 
ecosystem services (Dayton et al., 2005; Koch et al., 2009; Waycott et al., 2009). 

3.2.4 Oxygen minimum zones (OMZs) 

OMZs, which occur at midwater depths (200-1000 m) in association with eastern 
boundary upwelling systems, are expanding globally as the solubility of dissolved O2 
decreases and vertical stratification increases due to upper ocean warming (Chan et al., 
2008; Capotondi et al., 2012; Bijma et al., 2013). Currently, the total surface area of 
OMZs is estimated to be ~30 x 106 km2 (~8 per cent of the ocean’s surface area) with a 
volume of ~10 x 106 km3 (~0.1 per cent of the ocean’s volume). It is expected that the 
spatial extent of OMZs will continue to increase (Oschlies et al., 2008), a trend that is 
likely to affect nutrient cycles and fisheries – especially when combined with the spread 
of coastal dead zones associated with coastal eutrophication. 

3.2.5 Toxic Algal Blooms  

Toxin-producing algae are a diverse group of phytoplankton species with only two 
characteristics in common: (1) they harm people and ecosystems; and (2) their 
initiation, development and dissipation are governed by species-specific population 





production by phytoplankton and cyanobacteria (Häder et al., 2007; Villar-Argaiz et al., 
2009; Ha et al., 2012), changes in the structure and function of plankton communities 
(Ferreyra et al., 2006; Häder et al., 2007; Fricke et al., 2011; Guidi et al., 2011; Santos et 
al., 2012a; Ha et al., 2014), and alterations of the N cycle (Goes et al., 1995; Jiang and 
Qiu, 2011). The ozone layer in the Earth’s stratosphere blocks most UV-B from reaching 
the ocean’s surface. Consequently, stratospheric ozone depletion since the 1970s has 
been a concern, especially over the South Pole, where a so-called ozone hole has 
developed.21 However, the average size of the ozone hole declined by ~2 per cent 
between 2006 and 2013 and appears to have stabilized, with variation from year to year 
driven by changing meteorological conditions.22 It has even been predicted that there 
will be a gradual recovery of ozone concentrations by ~2050 (Taalas et al., 2000). Given 
these observations and variations in the depths to which UV-B penetrates in the ocean 
(~1-10 m), a consensus on the magnitude of the ozone-depletion effect on NPP and 
nutrient cycling has yet to be reached. 

 

4. Socioeconomic importance 

 

Marine NPP supports a broad range of ecosystem services valued by society and 



2006/2007; Braatz et al., 2007; Koch et al., 2009;





phytoplankton NPP. Amplitude decreased by 1-2 per cent over most of the ocean, 
except in the Arctic, where an increase of 1 per cent by 2100 is projected. These results 
are supported by the response of phytoplankton and zooplankton to global climate-
change projections carried out with the IPSL Earth System Model (Chust et al., 2014). 
Projected upper ocean warming by the turn of the century led to reductions in 
phytoplankton and zooplankton biomass of 6 per cent and 11 per cent, respectively. 
Simulations suggest such declines are the predominant response over nearly 50 per cent 
of the ocean and prevail in the tropical and subtropical oceans while increasing trends 
prevail in the Arctic and Antarctic oceans. These results suggest that the capacity of the 
oceans to regulate climate through the biological carbon pump may decrease over the 
course of this century. The model runs also indicate that, on average, a 30-40 year time 
series of observations will be needed to validate model results. 

Regardless of the direction of global trends in NPP, climate change may be causing shifts 
in phytoplankton community size spectra toward smaller cells which, if confirmed, will 
have profound effects on the fate of NPP and nutrient cycling during this century 
(Polovina and Woodworth, 2012). The size spectrum of phytoplankton communities in 
the upper ocean’s euphotic zone largely determines the trophic organization of pelagic 
ecosystems and, therefore, the efficiency with which NPP is channelled to higher trophic 
levels, is exported to the deep ocean, or is metabolized in the upper ocean (Malo





trend. Should these trends continue, additional loss of ice during Arctic spring could 
boost NPP more than three-fold above 1998-2



year for some species and being delayed for others (Edwards and Richardson, 2004, 
section 6.3.2). In the North Pacific, there is a strong correlation between sea-surface 
temperature in the spring and the latitude at which subtropical species reach their 
seasonal peak in abundance.26 Water temperature also influences the annual cycle of 
Neocalanus plumchrus biomass in 



including the following: (1) decreases in the degree of aragonite saturation makes it 
harder for calcifying organisms (e.g., coccolithophores, foraminifera, and pteropods) to 
precipitate their mineral structures; (2) decreases in pH alters the bioavailability of 
essential algal nutrients such as iron and zinc; and (3) increases in CO2 decrease the 
energy requirements for photosynthetic organisms to synthesize biomass. Such 



and Cazenave, 2010). Macrophyte 



“Great Southern Coccolithophore Belt” of the Southern Ocean28 and at high latitudes in 
the NE Atlantic (Barnard et al., 2004; Balch et al., 2011; Sadeghi et al., 2012). If the 
abundance of these functional groups declines in these regions, likely impacts will be to 
reduce the capacity of the oceans to take up CO2, export carbon to the deep sea, and 
support fisheries (Cooley et al., 2009). 

 

6. Information needs 

 

As shown above, anthropogenic nutrient-loading of coastal waters and climate-change 
pressures on marine ecosystems (ocean warming and acidification, sea-level rise) are 
driving changes in NPP and nutrient cycles that are affecting the provision of ecosystem 
services and, therefore, sustainable development. However, although changes in 
macrophyte NPP and their impacts are relatively well documented (and must continue 
to be), a consensus on the magnitude of changes and even the direction of change in 
phytoplankton NPP and upper ocean nutrient cycles has yet to be reached. 

Documenting spatial patterns and temporal trends in NPP and nutrient cycles (and their 
causes and socioeconomic consequences) will rely heavily on the accuracy and 
frequency with which changes in NPP and nutrient cycling can be detected over a broad 
range of scales (cf. deYoung et al., 2004; UNESCO, 2012; Mathis and Feeley, 2013). 
Given the importance of marine NPP and the species diversity of primary producers to 
sustaining ecosystem services, rapid detection of changes in time-space patterns of 
marine NPP and in the diversity of primary producers that contribute to NPP is an 
important dimension of the Regular Process29 for global reporting and assessment of 
the state of the marine environment, including socioeconomic aspects. 

Data requirements for the Regular Process have been used to help guide the 
development of the Global Ocean Observing System and an implementation strategy for 



 

6.1  Net primary production 

Sustained observations of chlorophyll, irradiance and temperature fields are required 
for model-based estimates of phytoplankton NPP (see section 6.1.2). An integrated 
approach using long term data streams from both remote sensing and frequent in situ 
observations is needed to capture the dynamics of marine phytoplankton NPP and to 
detect decadal trends. Remote sensing provides a cost-effective means to observe 
physical and biological variables synoptically in time and space with sufficient resolution 
to elucidate linkages between climate-driven changes in the NPP of ecosystems and the 
dynamic relationship between phytoplankton NPP and the provision of ecosystem 
services (Platt et al., 2008; Forget et al., 



Quantifying inputs of N and P to coastal ecosystems and the open ocean requires a 
network of coordinated and sustained observations on local to global scales. For 
atmospheric deposition, monitoring should focus on regions that have intense 
deposition plumes downwind of major population centres in West Africa, East Asia, 
Europe, India, North and South America (section 6.2.1 and Schulz et al., 2012). This is a 
major goal of the SOLAS programme
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